Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production.

نویسندگان

  • Qingshang Yan
  • Xinbo Yang
  • Alessandra Cantone
  • Gerhard Giebisch
  • Steven Hebert
  • Tong Wang
چکیده

ROMK null mice with a high survival rate and varying severity of hydronephrosis provide a good model to study type II Bartter syndrome pathophysiology (26). During the development of such a colony, we found that more male than female null mice survived, 58.7% vs. 33.3%. To investigate the possible mechanism of this difference, we compared the survival rates, renal functions, degree of hydronephrosis, as well as PGE(2) and TXB(2) production between male and female ROMK wild-type and null mice. We observed that female ROMK Bartter's mice exhibited lower GFR (0.37 vs. 0.54 ml.min(-1).100 g BW(-1), P < 0.05) and higher fractional Na(+) excretion (0.66% vs. 0.48%, P < 0.05) than male Bartter's. No significant differences in acid-base parameters, urinary K(+) excretion, and plasma electrolyte concentrations were observed between sexes. In addition, we assessed the liquid retention rate in the kidney to evaluate the extent of hydronephrosis and observed that 67% of male and 90% of female ROMK null mice were hydronephrotic mice. Urinary PGE(2) excretion was higher in both sexes of ROMK null mice: 1.35 vs. 1.10 ng/24 h in males and 2.90 vs. 0.87 ng/24 h in females. TXB(2) excretion was higher in female mice in both wild-type and ROMK null mice. The increments of urinary PGE(2) and TXB(2) were significantly higher in female null mice than males, 233.33% vs. 22.74% of PGE(2) and 85.67% vs. 20.36% of TXB(2). These data demonstrate a more severe Bartter phenotype in female ROMK null mice, and higher PGE(2) and TXB(2) production may be one of the mechanisms of this manifestation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, a...

متن کامل

Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.

Bartter's syndrome represents a group of hereditary salt- and water-losing renal tubulopathies caused by loss-of-function mutations in proteins mediating or regulating salt transport in the thick ascending limb (TAL) of Henle's loop. Mutations in the ROMK channel cause type II antenatal Bartter's syndrome that presents with maternal polyhydramnios and postnatal life-threatening volume depletion...

متن کامل

ROMK is required for expression of the 70-pS K channel in the thick ascending limb.

Apical potassium recycling is crucial for salt transport by the thick ascending limb (TAL). Loss-of-function mutations in the K channel, ROMK (Kir1.1; KCNJ1), cause Bartter syndrome, a genetically heterogeneous disorder characterized by severe reduction in salt absorption by the TAL, Na wasting, polyuria, and hypokalemic alkalosis. ROMK(-/-) null mice exhibit a Bartter phenotype and lack the sm...

متن کامل

Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.

Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-spec...

متن کامل

Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome.

Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 3  شماره 

صفحات  -

تاریخ انتشار 2008